The Tachinidae represent the largest family of dipteran parasitoids, with ~10,000 species. Most of their hosts are Lepidoptera, and it is generally assumed that tachinid flies have wide host ranges (i.e., many suitable host species) (Stireman et al. 2006). However, it is likely that tachinid host ranges have been overestimated; in a long-term study of tachinid flies reared from hosts collected in Costa Rica, many species that appeared to be generalists were shown to be host-specific cryptic species (Smith et al. 2007).

Lespesia archippivora (Riley) (Tachinidae) has been reported to parasitize larvae of 25 Lepidoptera species in 14 families, and one species of Hymenoptera (Arnaud 1978). It is widespread throughout North and Central America, has been found in Brazil (Arnaud 1978), and was introduced into Hawaii for biocontrol in 1898 (Etchegaray and Nishida 1975). Except for its occurrence in multi-host species-rearing projects, L. archippivora has only been studied in detail in monarchs (Danaus plexippus L.) and beet armyworms (Spodoptera exigua Huber). It parasitizes monarch larvae in the continental U.S. and Hawaii (Etchegaray and Nishida 1975, Prysby 2004, Oberhauser et al. 2007), with one long-term, broad-scale monitoring project documenting an overall parasitism rate of ~13% (Oberhauser et al. 2007). In the southern U.S., the beet armyworm is reported to be a preferred L. archippivora host (Stapel et al. 1997).

North American monarchs complete multiple generations on their milkweed host plants (Asclepias spp.) within a summer breeding season, and overwinter in central Mexico (eastern migratory population) or coastal California (western migratory population). They remain in their wintering sites in a state of reproductive diapause from early November through mid-March, before returning to their spring breeding grounds. In the east, returning migrants lay eggs in the southeastern U.S. (Texas to Florida and Oklahoma to North Carolina) and their offspring recolonize the summer breeding range (roughly the northeastern quarter of the U.S. and southern Ontario and Quebec), where they undergo two to three non-migratory generations before the final generation returns to Mexico. There is some fall breeding by southward migrants in the southern U.S., resulting in another generation that presumably migrates to Mexico. Although some monarchs remain throughout the winter in the southern U.S., where at least some of them continue to breed (Prysby & Oberhauser...
2004), tagging records and host plant fingerprint studies suggest that
the vast majority of northern monarchs that eclose after mid-
to late August migrate to Mexico. The smaller western population
undergoes a shorter migration between breeding ranges west of the
Rocky Mountains and coastal California.

Immature monarchs have a large suite of invertebrate preda-
tors, with approximately 92% mortality during the egg and early larval stages (Prysby 2004 and references therein). Twelve species of
tachinid flies, at least one braconid wasp (Armada 1978), and a
pteromalid wasp (Pteromalus puparum L., personal observation)
have been reported in monarchs. However, many of these may rep-
resent incidental or very rare parasitism events.

Here, I report the results of an ongoing study that utilizes data
collected by citizen scientists in the Monarch Larva Monitoring
Project (MLMP, www.mlmp.org). I document long-term patterns in
parasitism of monarchs by L. archippivora, including relationships
between monarch density and L. archippivora parasitism rates.

Methods

Volunteer citizen scientists in the MLMP have documented tem-
poral and spatial variation in monarch egg and larval abundances
since 1997. Their monitoring sites include gardens, railroad right-
of-ways, roadsides, abandoned fields and pastures, natural habitats,
and restored prairies (see Prysby and Oberhauser 2004 for details).
In this study, I used two types of MLMP data. First, volunteers esti-
mate weekly monarch density per milkweed ramet\(^1\) by checking tens
to hundreds of ramets and noting the number of monarch eggs and
larvae observed. They enter these data into an online data repository.
Second, from 1999-2011, a subset of MLMP volunteers have collected
thousands of monarch larvae to measure tachinid parasitism rates.
Most volunteers collect and rear 4th or 5th instars, but have con-
tributed records from hundreds of monarchs collected as eggs and
younger larvae. They rear them in their homes, recording the date,
location, and larval stadium at collection, as well as the outcome of
each rearing (adult monarch; died of unknown cause; died accidental
death; parasitized by fly; parasitized by wasp). A "notes" data field
allows volunteers to record additional information that they consider
relevant. Most also record the number of parasitoids that emerge from
each host. Volunteers only identify parasitoids to order, but all of
the flies that we have identified to species (several dozen from throughout
the U.S) have been L. archippivora (Oberhauser et al. 2007).

For the analyses reported here, I omitted data when monarch
death was accidental (e.g., dropping the specimen; crushing between
the lid and rearing container). I also omitted data from a volunteer
who did not understand the data entry protocol and entered data for
more than one monarch in a single entry, and another whose reared
larvae suffered very high rates (47%) of mortality.

To compare rates of tachinid fly parasitism to monarch densi-
ties, I calculated regional metrics of immature monarch density col-
lected by MLMP volunteers, using data from the upper midwestern
(MN, WI, IA, and MI) and southern (TX, OK, MS, AL, NC, SC, GA, FL)
United States. I used egg density (eggs observed/ramets examined)
throughout a given region in a given week to represent monarch
density during that week. In the upper Midwest, I used the July or
August week with peak density to represent annual population size.

\(^1\)Because many individual Asclepias plants, especially A. syriaca (the most common-
ly used species in the northeastern quarter of the U.S.), produce multiple ramets
from a single plant, or genet, individual milkweed stems, regardless of species, are
referred to as ramets throughout this paper.

In the South, I calculated two maxima for each region: one during
the spring migration (April through mid-May) and another during
the fall migration (September and October). Monarchs are generally
absent from this region for most of June-August. I only used data
from weeks during which >100 ramets were examined from at least
two sites, and did not use data from years in which this criterion was
met for fewer than five and six weeks in the spring and fall in the
South, respectively. All years of the study had well over 100 observed
plants during all July and August weeks in the upper Midwest. These
criteria made it more likely that I used true maxima to represent
annual monarch densities.

I calculated the marginal rate of parasitism in each larval stadium
as:

\[
m_n = 1 - (1 - q_i)^{n_i/n}
\]

where \(q_i\) = the apparent mortality from tachinid parasitism of larvae
collected during stadium \(i\), and \(q_i\) = the mortality from all combined
causes during stadium \(i\) (modified from Bellows et al. 1992). This is
appropriate because larvae that died from other causes may have
been parasitized (in fact, dissections suggest that parasitism often
results in host death before the parasitoids mature [personal ob-
servations and Ilse Gebhard, personal communication]). Using the
marginal rate corrects for the fact that the measured rate of parasit-
ism is likely to underestimate the actual rate.

I estimated the daily risk of parasitism in each stadium \(R_i\), cor-
recting for time in each stadium and the relative abundance of each
stadium. These calculations assume that both parasitoids and MLMP
volunteers encounter monarchs in proportion to their abundance.
I estimated relative abundance using MLMP data that met the fol-
lowing criteria: volunteers monitored at least four times during a
given year (to eliminate year/site combinations in which volunteers
may have missed stages due to monarch phenology); volunteers
monitored 10 or more plants per monitoring event (to decrease sam-
ping error); volunteers did not report more larvae than eggs;
and volunteers reported at least some eggs (volunteers not meeting
the latter two categories probably missed monarchs that were less
apparent, such as eggs and earlier stadia). I used the following for-
formula to estimate the relative daily risk of parasitism in each stadium:

\[
R_i = [(m_n - m_\text{abs})/t \cdot s_i],
\]

where \(m_n\) is defined above, \(t_i\) is the number of days spent in stadium \(i\)
and \(s_i\) is survival to stadium \(i\) from \(i-1\). Monarchs spend approximately
2 days as 1st-4th instars and 4 days as 5th instars; \(s_i\) is calculated as
\(N_i/N_k\) where \(N_i\) = total number of larvae in stadium \(i\) observed by
MLMP volunteers.

Results

Data from 130 volunteers who reared 1-996 eggs and larvae over
the 13 years of the study (Fig. 1) provided 7,686 usable records. I
used all of these records to study rates of parasitism during different
stages. To look at annual variation in parasitism rates, I only used
data from larvae collected in the fifth (and final) stadium because
parasitism rates increase with the age of monarch at collection (see
below). I also limited this analysis to years in which parasitism data
from over 10 fifth-instar monarchs were reported in the region of
study; this criterion was met every year from 2000-2010 in the upper
Midwest (range 87-377, mean = 204) and in eight of these 11 years
in the South (range 10-461, mean = 125).
Volunteers collected and reared monarchs in all immature stages (N: egg = 654, L1 = 619, L2 = 417, L3 = 493, L4 = 1458, L5 = 3999, pupa = 46). From one to 12 flies emerged from individual monarchs. Later stages tended to produce more flies per monarch, although this relationship is only statistically significant when comparing 1st–3rd to 4th–5th instars (Fig. 2). Monarchs collected during later stadia were more likely to be parasitized and the daily risk of parasitism was higher during the middle three stadia (Fig. 3).

There is a correlation between tachinid parasitism rates and monarch population densities in the upper Midwest the previous year (Fig. 4; Pearson coefficient = 0.663, N = 11, p = 0.0262). There is no relationship between tachinid parasitism rates and current-year monarch densities in the upper Midwest, nor between parasitism and spring or fall monarch densities during the current or previous year in the southern U.S.

In the upper Midwest, high monarch densities one year are followed by high *L. archippivora* parasitism rates in the next year. One explanation for this coupling is that monarchs drive *L. archippivora* numbers. This hypothesis seems contrary to the assumption that *L. archippivora* is a generalist, but could result if multiple *L. archippivora* hosts follow similar cycles, perhaps tracking abiotic conditions. The hypothesis that monarchs are the primary *L. archippivora* host is supported by Janzen and Hallwachs’ (2009) extensive caterpillar-rearing study in Costa Rica, in which all of 27 rearings of *L. archippivora* were from monarchs (out of 292 monarch reearings and 51,425 total rearings).

Monarch migratory patterns in the eastern U.S. result in temporally separated spring and fall generations in the South, and continuous summer generations in the North (Prysby and Oberhauser 2004). Unless the parasitoids undergo summer diapause, they must use alternate hosts during the summer in the southern U.S. Thus, phenological overlap between monarchs and *L. archippivora* may differ throughout the breeding range in ways that could affect *L. archippivora* specificity. The fact that the correlation between monarch densities and parasitism rates the following year was only found in the upper Midwest supports the hypothesis that the *L. archippivora*/monarch interaction is more specific in this region, as does the fact that Stireman and Singer (2003) reared *L. archippivora* from five...
other hosts in the southwestern U.S.

This research demonstrates the value of detailed and long-term records on host distribution and abundance as well as parasitism rates that have been collected by MLMP volunteers. A study of this magnitude would have been impossible without their contributions.

Acknowledgments

I thank the hundreds of MLMP volunteers who have contributed to this project, especially Deb Marcinski, Emily Toriani-Moura, Alan Williams, Donna Kemp, Brian Bockhahn, Sondra Cabell, Ilse Gebhard, Sharon Duerkop, Darlene Pinchot, Susan Payant, Suzanne Oberhauser, Diane Rock, and Charlie Cameron; and Monarch Lab students and staff for their help in developing protocols and communicating with volunteers. This research was supported by the National Science Foundation (ESI 9731429, ESI 0104600), the National Center for Ecological Analysis and Synthesis, and the Monarchs in the Classroom program at the University of Minnesota.

Literature Cited

Karen Oberhauser is an Associate Professor in the Dept. of Fisheries, Wildlife and Conservation Biology at the University of Minnesota. She and her students conduct research on several aspects of monarch butterfly ecology, including reproductive ecology, host-parasite interactions, factors affecting the distribution and abundance of immature monarch stages, risks posed by global climate change and pest control practices to monarch butterflies. She and her student Michelle Prysby started the Monarch Larva Monitoring Project in 1996.

The Lost Ladybug Project:
Citizen Spotting Surpasses Scientist’s Surveys

John Losey, Leslie Allee, and Rebecca Smyth

Coccinellids, known as ladybugs, ladybeetles, or ladybird beetles, are among the most common and easily recognizable invertebrate components of almost every terrestrial ecosystem in the U.S. and Canada (Gordon 1985). Species in this family are so ubiquitous and yet so sensitive to environmental conditions that they have been proposed as indicator species (Iperti 1999). In addition to their ubiquity, the bright coloration and gentle nature of this group make them a favorite wild creature of adults and youth alike. Like honeybees, ladybugs are revered for their industriousness and their important ecological role as well as their beauty.

This respect is well deserved, as ladybugs contribute to the control of many pest insect species (reviewed in Hodek and Honěk 1996). Given their potential to control pest species, many programs have tried to supplement extant populations or introduce new species. Ladybugs have been the subject of many scientific studies, and from these studies we know that ladybug species vary greatly in their ability to suppress pest populations (reviewed in Hodek and Honěk 1996) and their response to changing environmental conditions (Iperti 1999; Bazzocchi et al. 2004). Thus, long-term regional shifts in species composition may have important implications for the functioning of this complex and its response to environmental changes.

Over the past twenty years, several native ladybug species that were once very common have become extremely rare (Harmon et al. 2006). During this same time, several species of ladybugs from other places have greatly increased both their numbers and range (Harmon et al. 2006). This has occurred very quickly, and we don’t know how this shift happened, what impact it will have (e.g., whether the exotic species will be able to control pests as well as our familiar native ones have),